NN

Giải phương trình: \(cos\left(3x+\dfrac{\pi}{6}\right)-sin\left(\dfrac{\pi}{3}-3x\right)=\sqrt{3}\)

H24
24 tháng 8 2023 lúc 9:34

Để giải phương trình này, chúng ta sẽ sử dụng các công thức chuyển đổi của hàm lượng giác để làm cho phương trình có dạng đơn giản hơn.Trước tiên, chúng ta sẽ sử dụng công thức chuyển đổi:sin(π/3 - 3x) = sin(π/3)cos(3x) - cos(π/3)sin(3x)= (√3/2)cos(3x) - (1/2)sin(3x)Sau đó, phương trình trở thành:cos(3x + π/6) - (√3/2)cos(3x) + (1/2)sin(3x) = √3Tiếp theo, chúng ta sẽ sử dụng công thức cộng hai cosin và sin:cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a + b) = sin(a)cos(b) + cos(a)sin(b)Áp dụng công thức này, phương trình trở thành:cos(3x)cos(π/6) - sin(3x)sin(π/6

Bình luận (4)
NT
24 tháng 8 2023 lúc 11:16

\(cos\left(3x+\dfrac{pi}{6}\right)-sin\left(\dfrac{pi}{3}-3x\right)=\sqrt{3}\)

=>\(cos\left(3x+\dfrac{pi}{6}\right)-cos\left(\dfrac{pi}{2}-\dfrac{pi}{3}+3x\right)=\sqrt{3}\)

=>\(cos\left(3x+\dfrac{pi}{6}\right)-cos\left(3x+\dfrac{pi}{6}\right)=\sqrt{3}\)

=>0x=căn 3(vô lý)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết