GF

Giải phương trình 

cos2x + cosx + 1= sin2x+sinx

NL
27 tháng 12 2022 lúc 18:43

\(cos2x+cosx+1=sin2x+sinx\)

\(\Leftrightarrow cos^2x-sin^2x+cosx+cos^2x+sin^2x=2sinx.cosx+sinx\)

\(\Leftrightarrow2cos^2x+cosx=2sinx.cosx+sinx\)

\(\Leftrightarrow cosx\left(2cosx+1\right)=sinx\left(2cosx+1\right)\)

\(\Leftrightarrow\left(2cosx+1\right)\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sinx=cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\tanx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{4}+k\pi\\\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PC
Xem chi tiết
PB
Xem chi tiết
DA
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết