Bài 5: Phương trình chứa ẩn ở mẫu

NA

Giải phương trình:

b)4x/x2+4x+3 - 1=6(1/x+3 - 1/2x+2)

c)x2-x-12=0

e)6x+22/x+2 - 2x+7/x+3=x+4/x^2+5x+6

HA
19 tháng 4 2020 lúc 20:19

b)

\(\frac{4x}{x^2+4x+3}-1=6\cdot\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\\ \Leftrightarrow\frac{4x}{\left(x+1\right)\cdot\left(x+3\right)}-1=6\cdot\left(\frac{1}{x+3}-\frac{1}{2\cdot\left(x+1\right)}\right)\\ \Leftrightarrow4x-\left(x+1\right)\cdot\left(x+3\right)=6\cdot\left(\frac{1}{x+3}-\frac{1}{2\cdot\left(x+2\right)}\right)\cdot\left(x+1\right)\cdot\left(x+3\right)\\ \Leftrightarrow-x^2-3=\frac{6x^2}{x+3}+\frac{24x}{x+3}+\frac{18}{x+3}-\frac{3x^2}{x+1}-\frac{12x}{x+1}-\frac{9}{x++1}\\ \Leftrightarrow-x^2\cdot\left(x+3\right)\cdot\left(x+1\right)-3\cdot\left(x+3\right)\cdot\left(x+1\right)=6x^2\cdot\left(x+1\right)+24x\cdot\left(x+1\right)+18\cdot\left(x+1\right)-3x^2\cdot\left(x+3\right)-12x\cdot\left(x+3\right)-9\cdot\left(x+3\right)\\ \Leftrightarrow-x^4-4x^3-6x^2-12x-9=3x^3+9x^2-3x-9\\ \Leftrightarrow-x^4-4x^3-6x^2-12x=3x^3+9x^2-3x\\ \Leftrightarrow x^4+4x^3+6x^2+12x+3x^3+9x^2-3x=0\\ \Leftrightarrow x^4+7x^3+15x^2+9x=0\\ \Leftrightarrow x\cdot\left(x^3+7x^2+15x+9\right)=0\\ \Leftrightarrow x\cdot\left(x^2+6x+9\right)\cdot\left(x+1\right)=0\\ \Leftrightarrow x\cdot\left(x+3\right)^2\cdot\left(x+1\right)=0\)

\(\Rightarrow x=\left[{}\begin{matrix}0\\-3\\-1\end{matrix}\right.\)

Bình luận (0)
HA
19 tháng 4 2020 lúc 20:29

c)

\(x^2-x-12=0\\ \Leftrightarrow x^2+3x-4x-12=0\\ \Leftrightarrow x\cdot\left(x+3\right)-4\cdot\left(x+3\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

e)

\(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\\ \Leftrightarrow\frac{6x^2+40x+66}{x^2+5x+6}-\frac{2x^2+11x+14}{x^2+5x+6}-\frac{x+4}{x^2+5x+6}=0\\ \Leftrightarrow6x^2+40x+66-2x^2-11x-14-x-4=0\\ \Leftrightarrow4x^2+28x+48=0\\ \Leftrightarrow4\cdot\left(x^2+7x+12\right)=0\\ \Leftrightarrow4\cdot\left(x^4+4x+3x+12\right)=0\\ \Leftrightarrow4\cdot\left[x\cdot\left(x+4\right)+3\cdot\left(x+4\right)\right]=0\\ \Leftrightarrow4\cdot\left(x+4\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+4=0\\x+3=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=-4\\x=-3\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
AG
Xem chi tiết
NT
Xem chi tiết
MD
Xem chi tiết
CS
Xem chi tiết
TD
Xem chi tiết
DT
Xem chi tiết
D2
Xem chi tiết
ND
Xem chi tiết
VA
Xem chi tiết