Bài 5: Phương trình chứa ẩn ở mẫu

H24

Giải phương trình:

a, \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)

b,\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^1-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

NT
28 tháng 4 2020 lúc 13:26

a) ĐKXĐ: \(x\notin\left\{\frac{1}{3};\frac{-11}{3}\right\}\)

Ta có: \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)

\(\Leftrightarrow\frac{2\left(1-3x\right)\left(3x+11\right)}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}=\frac{\left(3x+11\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}-\frac{3\left(1-3x\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}\)

\(\Leftrightarrow-18x^2-60x+22=9x^2+66x+121-3\left(1-6x+9x^2\right)\)

\(\Leftrightarrow-18x^2-60x+22-9x^2-66x-121+3\left(1-6x+9x^2\right)=0\)

\(\Leftrightarrow-27x^2-126x-99+3-18x+27x^2=0\)

\(\Leftrightarrow-144x-96=0\)

\(\Leftrightarrow-144x=96\)

hay \(x=\frac{-2}{3}\)(tm)

Vậy: \(x=\frac{-2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
VT
Xem chi tiết
NK
Xem chi tiết