Bài 5: Phương trình chứa ẩn ở mẫu

HN

Giải phương trình :

a, \(\dfrac{1}{x^2+9x+3}\) + \(\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

b, \(\dfrac{1}{x^3+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{1}{3}\)

NT
3 tháng 1 2023 lúc 14:19

a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)

\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)

=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)

=>(x+4)(x+7)=54

=>x^2+11x+28-54=0

=>(x+13)(x-2)=0

=>x=-13 hoặc x=2

b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)

=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)

=>x^2+6x+5=12

=>x^2+6x-7=0

=>(x+7)(x-1)=0

=>x=-7 hoặc x=1

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết
PN
Xem chi tiết
DK
Xem chi tiết
NV
Xem chi tiết
MC
Xem chi tiết
TM
Xem chi tiết