Bài 4: Phương trình tích

H24

Giải phương trình:

10. (x2-2x-3)(x2+10x+21)=25

11. x4-4x3+10x2+37x-14=0

12. (x+5)(x+10)(x+11)-8x=0

AH
27 tháng 2 2019 lúc 21:55

10.

\((x^2-2x-3)(x^2+10x+21)=25\)

\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)

\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)

\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)

Đặt \(x^2+4x-21=a\) thì pt trở thành:

\(a(a+24)=25\)

\(\Leftrightarrow a^2+24a-25=0\)

\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)

Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)

\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)

Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)

Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)

Bình luận (0)
AH
27 tháng 2 2019 lúc 22:16

11.

\(x^4-4x^3+10x^2+37x-14=0\)

\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)

\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)

\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)

\((x+2)(x^3-6x^2+22x-7)=0\)

\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)

Đối với pt $(*)$ (ta sử dụng pp Cardano)

\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)

\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)

Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:

\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)

\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)

\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:

\(27t^2+576t-1000=0\)

\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)

\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)

\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)

\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.

P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LQ
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
PT
Xem chi tiết
LQ
Xem chi tiết
NT
Xem chi tiết