Bài 5. ÔN TẬP CUỐI NĂM

HH

Giải hpt sau:

1, \(\left\{{}\begin{matrix}x+y=5\\\sqrt{x+1}+\sqrt{y-1}=3\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}x^2y-2x^2+3y=6\\\sqrt{x^2+5}+\sqrt{y^2+5}=3x-y-1\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}2x-2=y+\sqrt{y-2}\\2y-2=x+\sqrt{x-2}\end{matrix}\right.\)

Mng giúp mình vs ạ!!!

NL
19 tháng 7 2020 lúc 14:53

1.

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-1\\y=b^2+1\end{matrix}\right.\)

Hệ trở thành:

\(\left\{{}\begin{matrix}a+b=3\\a^2+b^2=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=3-a\\a^2+b^2=5\end{matrix}\right.\)

\(\Rightarrow a^2+\left(3-a\right)^2=5\)

\(\Leftrightarrow2a^2-6a+4=0\Rightarrow\left[{}\begin{matrix}a=1\Rightarrow b=2\\a=2\Rightarrow b=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{y-1}=2\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{y-1}=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)
NL
19 tháng 7 2020 lúc 14:56

2.

Pt đầu tương đương:

\(x^2y-2x^2+3y-6=0\)

\(\Leftrightarrow x^2\left(y-2\right)+3\left(y-2\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(y-2\right)=0\)

\(\Rightarrow y=2\)

Thay xuống dưới:

\(\sqrt{x^2+5}+3=3x-3\)

\(\Leftrightarrow\sqrt{x^2+5}=3x-6\) (\(x\ge2\))

\(\Leftrightarrow x^2+5=9x^2-36x+36\)

\(\Leftrightarrow8x^2-36x+31=0\Rightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{19}}{4}\\x=\frac{9-\sqrt{19}}{4}\left(l\right)\end{matrix}\right.\)

Bình luận (0)
NL
19 tháng 7 2020 lúc 15:00

3.

ĐKXĐ: ...

Trừ vế cho vế ta được:

\(2x-2y=y-x+\sqrt{y-2}-\sqrt{x-2}\)

\(\Leftrightarrow3\left(x-y\right)+\sqrt{x-2}-\sqrt{y-2}=0\)

\(\Leftrightarrow3\left(x-y\right)+\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(3+\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)

\(\Leftrightarrow x=y\) (ngoặc to luôn dương)

Thay vào pt đầu:

\(2x-2=x+\sqrt{x-2}\)

\(\Leftrightarrow x-2=\sqrt{x-2}\Rightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=3\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
AS
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
QP
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết