Bài 1: Phương trình bậc nhất hai ẩn

PA

Giải hpt \(\left\{{}\begin{matrix}\dfrac{12}{x+y}+\dfrac{12}{x-y}=\dfrac{5}{2}\\\dfrac{4}{x+y}+\dfrac{8}{x-y}=\dfrac{4}{3}\end{matrix}\right.\)

DL
14 tháng 2 2022 lúc 16:57

undefined

Bình luận (2)
H24
14 tháng 2 2022 lúc 17:02

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3.4}{x+y}+\dfrac{3.4}{x-y}=\dfrac{5}{2}\\\dfrac{4}{x+y}+\dfrac{2.4}{x+y}=\dfrac{4}{3}\end{matrix}\right.\\ Đặt.a=\dfrac{4}{x+y},b=\dfrac{4}{x-y}\\ \Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{5}{2}\\a+2b=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{5}{2}\\3a+6b=4\end{matrix}\right.\) 

\(\Leftrightarrow\left(3a+6b\right)-3a-3b=4-\dfrac{5}{2}\\ \Leftrightarrow3b=\dfrac{3}{2}\Rightarrow b=\dfrac{1}{2}\Rightarrow a+2.\dfrac{1}{2}=\dfrac{4}{3}\\\Leftrightarrow a+1=\dfrac{4}{3}\Rightarrow a=\dfrac{1}{3}\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{4}{x+y}=\dfrac{1}{3}\\\dfrac{4}{x+y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=12\\x-y=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\y=2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
MH
Xem chi tiết
NQ
Xem chi tiết
VD
Xem chi tiết
NL
Xem chi tiết
NP
Xem chi tiết
XH
Xem chi tiết
NB
Xem chi tiết
TH
Xem chi tiết