Bài 1: Phương trình bậc nhất hai ẩn

NQ

\(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{1}{2x-3y}+\dfrac{5}{3x+y}=\dfrac{5}{8}\\\dfrac{3}{2x-3y}-\dfrac{5}{3x+y}=-\dfrac{3}{8}\\\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-y=2\\y-3z=2\\-3x-2y+z=-2\end{matrix}\right.\)

NL
19 tháng 2 2019 lúc 21:15

a) \(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\end{matrix}\right.\) \(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{x+y}{xy}=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4xy\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4\left(5y-5x\right)\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y=20y-20x\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y-20y+20x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-15y+25x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-5\left(3y-5x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\3y-5x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-3y=xy\\5x=3y\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2y=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=\dfrac{10}{3}\end{matrix}\right.\)

Bình luận (0)
NL
19 tháng 2 2019 lúc 21:23

b) \(\left\{{}\begin{matrix}\dfrac{1}{2x-3y}+\dfrac{5}{3x+y}=\dfrac{5}{8}\\\dfrac{2}{2x-3y}-\dfrac{5}{3x+y}=\dfrac{-3}{8}\end{matrix}\right.\)

Đặt \(\dfrac{1}{2x-3y}=a;\dfrac{1}{3x+y}=b\)

=> hpt <=> \(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b=\dfrac{-3}{8}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b+a+5b=\dfrac{-3}{8}+\dfrac{5}{8}=0,25\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\3a=0,25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\a=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=\dfrac{1}{12}\\b=\dfrac{13}{120}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x-3y}=\dfrac{1}{12}\\\dfrac{1}{3x+y}=\dfrac{13}{120}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=12\\3x+y=\dfrac{120}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{516}{143}\\y=-\dfrac{228}{143}\end{matrix}\right.\)

Bình luận (0)
NL
19 tháng 2 2019 lúc 21:29

c) \(\left\{{}\begin{matrix}x-y=2\\y-3z=2\\-3x-2y+z=-2\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=y+2\\y=3z+2\\-3\left(y+2\right)-2\left(3z+2\right)+z=-2\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=y+2\\y=3z+2\\-3y-6-6z-4+z=-2\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=y+2\\y=3z+2\\-3y-5z=8\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=y+2\\y=3z+2\\-3\left(3z+2\right)-5z=8\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=y+2\\y=3z+2\\-9z-6-5z=8\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=y+2\\y=3z+2\\-14z=14\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\left(-1\right)+2=1\\y=3\left(-1\right)+2=-1\\z=-1\end{matrix}\right.\)

Vậy...

Bình luận (0)