NA

Giải hộ mình 2 câu đó với ạ

NL
24 tháng 3 2021 lúc 17:57

6.

\(\Leftrightarrow x^2+4x+3>m\) ; \(\forall x>1\)

\(\Leftrightarrow m< \min\limits_{x>1}\left(x^2+4x+3\right)\)

Xét hàm \(f\left(x\right)=x^2+4x+3\) với \(x>1\)

\(-\dfrac{b}{2a}=-2< 1\) ; \(f\left(1\right)=8\Rightarrow f\left(x\right)>8\) ; \(\forall x>1\)

\(\Rightarrow m\le8\)

7.

Do C thuộc d nên tọa độ có dạng: \(C\left(-2c-1;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;6\right)\\\overrightarrow{CA}=\left(2c;1-c\right)\end{matrix}\right.\)

\(AB\perp AC\Leftrightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Leftrightarrow4.2c+4\left(1-c\right)=0\)

\(\Leftrightarrow4c+4=0\Rightarrow c=-1\Rightarrow C\left(1;-1\right)\)

b.

 \(AB=\sqrt{4^2+6^2}=2\sqrt{13}\)

Phương trình đường thẳng AB qua A và nhận \(\left(3;-2\right)\) là 1 vtpt có dạng:

\(3\left(x+1\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y+5=0\)

Do d thuộc d nên tọa độ có dạng: \(D\left(-2d-1;d\right)\)

\(S_{ABD}=\dfrac{1}{2}AB.d\left(D;AB\right)=50\)

\(\Leftrightarrow\dfrac{\sqrt{13}\left|3\left(-2d-1\right)-2d+5\right|}{\sqrt{3^2+\left(-2\right)^2}}=50\)

\(\Leftrightarrow\left|-8d+2\right|=50\Rightarrow\left[{}\begin{matrix}d=-6\\d=\dfrac{13}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(11;-6\right)\\D\left(-14;\dfrac{13}{2}\right)\end{matrix}\right.\)

Bình luận (0)
HP
24 tháng 3 2021 lúc 18:18

2.

a, Gọi \(C=\left(-2m-1;m\right)\) là điểm cần tìm

\(AB=2\sqrt{13};AC=\sqrt{5m^2-2m+1};BC=\sqrt{5m^2+2m+65}\)

Ta có \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow5m^2+2m+65=52+5m^2-2m+1\)

\(\Leftrightarrow m=-3\)

\(\Rightarrow C=\left(5;-3\right)\)

b, Gọi \(D=\left(-2n-1;n\right)\) là điểm cần tìm

Đường thẳng AB có phương trình \(\dfrac{x+1}{4}=\dfrac{y-1}{6}\Leftrightarrow3x-2y+5=0\)

Khoảng cách từ \(D\) đến \(AB\):

\(d\left(D;AB\right)=\dfrac{\left|3\left(-2n-1\right)-2n+5\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|-8n+2\right|}{\sqrt{13}}\)

\(S_{ABC}=\dfrac{1}{2}.\dfrac{\left|-8n+2\right|}{\sqrt{13}}.2\sqrt{13}=50\)

\(\Rightarrow\left|4n-1\right|=25\)

\(\Leftrightarrow\left[{}\begin{matrix}n=-6\\n=\dfrac{13}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}N=\left(11;-6\right)\\N=\left(-14;\dfrac{13}{2}\right)\end{matrix}\right.\)

 

Bình luận (0)

Các câu hỏi tương tự
AM
Xem chi tiết
NT
Xem chi tiết
AM
Xem chi tiết
LL
Xem chi tiết
TD
Xem chi tiết
TS
Xem chi tiết
TH
Xem chi tiết
AM
Xem chi tiết
PH
Xem chi tiết