\(\left\{{}\begin{matrix}x+1=ky\\y+1=mx\end{matrix}\right.\Leftrightarrow x-y=ky-mx\Leftrightarrow\left(m+1\right)x-\left(k+1\right)y=0\)
Với \(k,m\in Z^+\Rightarrow x=y=0\)
\(\left\{{}\begin{matrix}x+1=ky\\y+1=mx\end{matrix}\right.\Leftrightarrow x-y=ky-mx\Leftrightarrow\left(m+1\right)x-\left(k+1\right)y=0\)
Với \(k,m\in Z^+\Rightarrow x=y=0\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{x}\left(1+y\right)=2y\\\sqrt{y}\left(1+z\right)=2z\\\sqrt{z}\left(1+x\right)=2x\end{matrix}\right.\)
Giải hệ pt sau \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
Giải hệ phương trình (x, y, z dương)
\(\left\{{}\begin{matrix}x\left(x-z\right)=-1\\y\left(z+x\right)=8\\z\left(x-y\right)=-3\end{matrix}\right.\)
Giải hệ:
\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4zx=3\left(x+z\right)\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}7xy=12\left(x+y\right)\\9yz=20\left(y+z\right)\\8zx=15\left(z+x\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x+y+z=3\\y+z+t=4\\z+t+x=5\\t+x+y=6\end{matrix}\right.\)
giải hệ phương trình
a)\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^2+y^2+2\left(xy-2\right)=0\\x^2+y^2-2xy=16\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{x}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{matrix}\right.\)
Giải hệ phương trình sau : \(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b^2\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}2x^2=y\left(x^2+1\right)\\2y^2=z\left(y^2+1\right)\\2z^2=x\left(z^2+1\right)\end{matrix}\right.\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)