Violympic toán 9

AR

Giải hệ phương trình sau : \(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b^2\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\end{matrix}\right.\)

DH
2 tháng 1 2020 lúc 23:07

\(x+y+z=a\)

\(\Leftrightarrow\left(x+y+z\right)^2=a^2\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\)

\(\Leftrightarrow b^2+2\left(xy+yz+zx\right)=a^2\)

\(\Leftrightarrow xy+yz+zx=\frac{a^2-b^2}{2}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{c}\Leftrightarrow xyz=\left(xy+yz+zx\right)c=\frac{a^2-b^2}{2}.c\)

\(x^2+y^2+z^2=b^2\)

\(\Leftrightarrow x^2+\left(y+z\right)^2-2yz=b^2\)

\(\Leftrightarrow x^2+\left(a-x\right)^2-2\left[\frac{\left(a^2-b^2\right)c}{2x}\right]=b^2\)

\(\Leftrightarrow x^2+a^2-2ax+x^2-\frac{\left(a^2-b^2\right)c}{x}=b^2\)

\(\Leftrightarrow2x^3-2ax^2+\left(a^2-b^2\right)x-\left(a^2-b^2\right)c=0\)

\(x,y,z\) là nghiệm của phương trình trên.

~~~~~ Không chắc lắm ạ ~~~~~~
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AR
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
TH
Xem chi tiết
LS
Xem chi tiết
BL
Xem chi tiết
DV
Xem chi tiết
HT
Xem chi tiết