Violympic toán 9

NH

Giải hệ pt

a) \(\left\{{}\begin{matrix}x^2-4xy+y^2=1\\y^2-3xy=4\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}2x^2-3xy+y^2=3\\x^2+2xy-2y^2=6\end{matrix}\right.\)

NL
26 tháng 7 2020 lúc 20:21

a/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-16xy+4y^2=4\\y^2-3xy=4\end{matrix}\right.\)

\(\Rightarrow4x^2-13xy+3y^2=0\)

\(\Leftrightarrow\left(x-3y\right)\left(4x-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3y\\y=4x\end{matrix}\right.\)

Thay vào pt sau: \(\left[{}\begin{matrix}y^2-3y.y=4\left(vn\right)\\\left(4x\right)^2-3x.4x=4\end{matrix}\right.\)

\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1;y=4\\x=-1;y=-4\end{matrix}\right.\)

b/

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Rightarrow3x^2-8xy+4y^2=0\)

\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}x=2y\\x=\frac{2}{3}y\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2\left(2y\right)^2-3.2y.y+y^2=3\\2\left(\frac{2}{3}y\right)^2-3.\frac{2}{3}y.y+y^2=3\end{matrix}\right.\) bạn tự giải nốt

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
TA
Xem chi tiết
PQ
Xem chi tiết
H24
Xem chi tiết
GB
Xem chi tiết
H24
Xem chi tiết
MS
Xem chi tiết
H24
Xem chi tiết
KZ
Xem chi tiết