Violympic toán 9

H24

Giải hệ pt:

\(\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\x^2+y^2-2x-2y=3\end{matrix}\right.\)

NL
27 tháng 7 2021 lúc 10:38

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x-1\right)^2+\left(y-1\right)^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x+y-2\right)^2-2\left(x-1\right)\left(y-1\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=v\\x+y-2=u\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv=6\\u^2-2v=5\end{matrix}\right.\) \(\Rightarrow u^2-\dfrac{12}{u}=5\)

\(\Rightarrow u^3-5u-12=0\)

\(\Leftrightarrow\left(u-3\right)\left(u^2+3u+4\right)=0\)

\(\Leftrightarrow u=3\Rightarrow v=2\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-2=3\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=5-x\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)\left(5-x-1\right)=2\)

\(\Leftrightarrow...\) em tự hoàn thành bài toán

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
KZ
Xem chi tiết
NA
Xem chi tiết
PQ
Xem chi tiết
NH
Xem chi tiết
LE
Xem chi tiết
SN
Xem chi tiết