Bài 2: Hoán vị, chỉnh hợp, tổ hợp

LV

Giải hệ phương trình

\(C_{x+1}^y\) : \(C_x^{y+1}\) : \(C_x^{y-1}\) = 6 : 5 : 2

NH
9 tháng 5 2016 lúc 9:13

Điều kiện để phương trình (1) trên có nghĩa là:

\(\begin{cases}x\ge y+1\\y-1\ge\\x,y\in Z\end{cases}0}\) \(\Leftrightarrow\) \(\begin{cases}y\ge1\\x\ge\\x,y\in Z\end{cases}y+1}\)(2)

Từ phương trình (1) ta có 

\(\frac{C_x^{y+1}}{C_x^{y-1}}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{x!\left(y-1\right)!\left(x-y+1\right)!}{\left(y+1\right)!\left(x-y-1\right)!x!}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{\left(x-y\right)\left(x-y+1\right)}{y\left(y+1\right)}\) = \(\frac{5}{2}\) (3)

Vẫn từ (1) ta có

\(\frac{C_{x+1}^y}{C_x^{y+1}}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) \(\frac{\left(x+1\right)!\left(y+1\right)!\left(x-y+1\right)!}{y!\left(x+1-y\right)!x!}\) = \(\frac{6}{5}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right)\left(y+1\right)}{\left(x-y\right)\left(x-y+1\right)}\) = \(\frac{6}{5}\) (4)

Nhân từng vế (3), (4) ta có 

\(\frac{x+1}{y}\) = 3 \(\Leftrightarrow\) x+1 = 3y   (5)

Thay (5) vào (4) đi đến

\(\frac{3y\left(y+1\right)}{\left(2y-1\right)2y}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) 15(y+1) = 12(2y-1)

\(\Leftrightarrow\) 9y = 27 \(\Leftrightarrow\) y=3 (6)

Từ (5), (6) có x=8

Vậy x=8, y=3 là nghiệm duy nhất của phương trình (1)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
VO
Xem chi tiết
PA
Xem chi tiết
LT
Xem chi tiết
TA
Xem chi tiết
PA
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết