Violympic toán 9

LS

Giải hệ phương trình: \(\left\{{}\begin{matrix}\left(x+3y+4z+t\right)^2=27\left(x^2+y^2+z^2+t^2\right)\\x^3+y^3+z^3+t^3=93\end{matrix}\right.\)

NL
18 tháng 10 2020 lúc 9:54

Ta có:

\(\left(1.x+3.y+4.z+1.t\right)^2\le\left(1^2+3^2+4^2+1^2\right)\left(x^2+y^2+z^2+t^2\right)\)

\(\Leftrightarrow\left(x+3y+4z+t\right)^2\le27\left(x^2+y^2+z^2+t^2\right)\)

Dấu "=" xảy ra khi và chỉ khi: \(x=\frac{y}{3}=\frac{z}{4}=t\Leftrightarrow\left\{{}\begin{matrix}y=3x\\z=4x\\t=x\end{matrix}\right.\)

Thay vào pt dưới:

\(x^3+27x^3+64x^3+x^3=93\)

\(\Leftrightarrow x=1\Rightarrow\left\{{}\begin{matrix}y=3\\z=4\\t=1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LS
Xem chi tiết
BL
Xem chi tiết
HN
Xem chi tiết
NU
Xem chi tiết
LE
Xem chi tiết
KN
Xem chi tiết
NN
Xem chi tiết
EC
Xem chi tiết
LS
Xem chi tiết