NH

giải hệ phương trình 

\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{8}\\\dfrac{y+x}{yz}=\dfrac{3}{4}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)

AH
7 tháng 8 2021 lúc 18:46

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{8}\\ \frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\ \frac{1}{z}+\frac{1}{x}=\frac{5}{6}\end{matrix}\right.\Rightarrow 2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{8}+\frac{3}{4}+\frac{5}{6}\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{47}{48}\)

\(\Rightarrow \left\{\begin{matrix} \frac{1}{z}=\frac{47}{48}-\frac{3}{8}\\ \frac{1}{x}=\frac{47}{48}-\frac{3}{4}\\ \frac{1}{y}=\frac{47}{48}-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{48}{29}\\ y=\frac{48}{11}\\ z=\frac{48}{7}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
DV
Xem chi tiết
Xem chi tiết
NM
Xem chi tiết
DY
Xem chi tiết
KP
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
TN
Xem chi tiết