Hệ phương trình đối xứng

VH

Giải hệ phương trình:

\(\left\{{}\begin{matrix}2\left(x+y\right)=3\left(\sqrt[3]{x^2y}+\sqrt[3]{xy^2}\right)\\\sqrt[3]{x}+\sqrt[3]{y}=6\end{matrix}\right.\)

NL
27 tháng 3 2019 lúc 18:19

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x}=a\\\sqrt[3]{y}=b\end{matrix}\right.\) \(\Rightarrow a+b=6\)

Biến đổi pt đầu:

\(2\left(a^3+b^3\right)=3\left(a^2b+ab^2\right)\Leftrightarrow2\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)=3ab\left(a+b\right)\)

\(\Leftrightarrow2\left(36-3ab\right)=3ab\Rightarrow ab=8\) \(\Rightarrow\left\{{}\begin{matrix}a+b=6\\ab=8\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm: \(t^2-6t+8=0\) \(\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4^3=64\\y=2^3=8\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=64\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
XH
Xem chi tiết
LM
Xem chi tiết
KM
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
KT
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết
LM
Xem chi tiết