Hệ phương trình đối xứng

XH

Giải hệ phương trình

a, \(\left\{{}\begin{matrix}\sqrt[4]{x^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

b, \(\left\{{}\begin{matrix}\sqrt{x+\frac{1}{y}}+\sqrt{x+y-3}=3\\2x+y+\frac{1}{y}=8\end{matrix}\right.\)

c,\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\)

AH
23 tháng 12 2019 lúc 10:44

Bài 2:

ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)

HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$

$\Rightarrow (a,b)=(2,1); (1,2)$

Nếu $(a,b)=(2,1)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)

$y=1\rightarrow x=3$

$y=-1\rightarrow y=5$

Nếu $(a,b)=(1,2)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)

\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)

Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$

Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$

Vậy...........

Bình luận (0)
 Khách vãng lai đã xóa
AH
5 tháng 1 2020 lúc 21:04

Bài 1:

Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)

Khi đó hệ PT trở thành:

\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)

Có: \(a^4+b^4=81\)

\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)

\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)

\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)

\(\Leftrightarrow 2a^2b^2-36ab=0\)

\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)

Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$

$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$

Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$

Dễ thấy pt này vô nghiệm nên loại

Vậy......

Bình luận (0)
 Khách vãng lai đã xóa
AH
5 tháng 1 2020 lúc 21:11

Bài 2:

ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)

HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$

$\Rightarrow (a,b)=(2,1); (1,2)$

Nếu $(a,b)=(2,1)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)

$y=1\rightarrow x=3$

$y=-1\rightarrow y=5$

Nếu $(a,b)=(1,2)$

\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)

\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)

Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$

Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$

Vậy...........

Bình luận (0)
 Khách vãng lai đã xóa
AH
5 tháng 1 2020 lúc 21:15

Bài 3:

Lấy PT(1) trừ PT(2) thu được:

$\frac{3}{x^2}-\frac{3}{y^2}=x-y$

$\Leftrightarrow (x-y)\left[1+\frac{3(x+y)}{x^2y^2}\right]=0$

Xét 2 TH:

TH1: $x-y=0\Rightarrow x=y$

Thay vào PT(1): $\frac{3}{x^2}=2x+x=3x$

$\Rightarrow x=1\Rightarrow y=1$

TH2: $1+\frac{3(x+y)}{x^2y^2}=0$

Lấy PT(1)+ PT(2) suy ra $3(x+y)=\frac{3}{x^2}+\frac{3}{y^2}>0$

$\Rightarrow x+y>0$

Do đó $1+\frac{3(x+y)}{x^2y^2}>0$ nên TH này loại

Vậy........

Bình luận (0)
 Khách vãng lai đã xóa
AH
5 tháng 1 2020 lúc 21:20

Bài 4:

PT $(1)\Leftrightarrow (x-y)+\frac{1}{y}-\frac{1}{x}=0$

$\Leftrightarrow (x-y)+\frac{x-y}{xy}=0$

$\Leftrightarrow (x-y).\frac{xy+1}{xy}=0$

$\Rightarrow x=y$ hoặc $xy+1=0$

Nếu $x=y$:

Thay vào PT$(2)$: $2x=x^3+1$

$\Leftrightarrow (x-1)(x^2+x-1)=0$

$\Rightarrow x=y=1$ hoặc $x=y=\frac{-1\pm \sqrt{5}}{2}$ (thỏa mãn)

Nếu $xy+1=0\Rightarrow y=-\frac{1}{x}$. Thay vào PT $(2)$:

\(\frac{-2}{x}=x^3+1\)

$\Rightarrow x^4+x+2=0$

$\Leftrightarrow (x^2-1)^2+x^2+(x+\frac{1}{2})^2+\frac{3}{4}=0$ (vô lý)

Vậy.........

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LM
Xem chi tiết
LM
Xem chi tiết
NL
Xem chi tiết
KM
Xem chi tiết
AT
Xem chi tiết
NT
Xem chi tiết
VH
Xem chi tiết
NH
Xem chi tiết
KN
Xem chi tiết