Hệ phương trình đối xứng

ND

Giải hệ phương trình :

          \(\begin{cases}\left(4x+2\right)^2=2y+15\left(1\right)\\\left(4y+2\right)^2=2x+15\left(2\right)\end{cases}\)

NV
13 tháng 5 2016 lúc 20:55

Trừ 2 vế ta được: (4x + 2)2 - (4y + 2)2 = 2y - 2x  => (4x + 2 + 4y + 2).(4x + 2 - 4y - 2) + 2x - 2y = 0

=> (4x + 4y + 4).(4x - 4y) + 2.(x - y) = 0

=> 16.(x + y + 1).(x - y) + 2.(x - y) = 0

=> 8.(x + y + 1).(x - y) + 2.(x - y) = 0

=> (x - y). (8x + 8y + 8 + 2) = 0

=> (x - y).(8x + 8y + 10) = 0

=> (x - y).(4x + 4y + 5) = 0

\(\Rightarrow\left[\begin{array}{nghiempt}x=y\\4x+4y+5=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=y\\x=\frac{-5-4y}{4}\end{array}\right.\)

Tới đây bạn chia ra 2 trường hợp giải nha

Bình luận (0)
NN
13 tháng 5 2016 lúc 20:56

Lấy (2) trừ (1), ta có :

\(\left(4x-4y\right)\left(4x+4y+4\right)=2y-2x\)

\(\Leftrightarrow2\left(x-y\right)\left(8x+8y+9\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\8x+8y+9=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}y=x\\y=-\frac{8x+9}{8}\end{array}\right.\)

* Với \(y=x\), thay vào (1) ta có :

\(\left(4x+2\right)^2=2x+15\)

\(\Leftrightarrow16x^2+14x-11=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{11}{8}\end{array}\right.\)

Vậy \(\left(x;y\right)=\left(\frac{1}{2};\frac{1}{2}\right);\left(x;y\right)=\left(-\frac{11}{8};-\frac{11}{8}\right)\) là nghiệm của hệ phương trình 

* Với \(y=-\frac{8x+9}{8}\), ta có : 

\(\left(4x+2\right)^2=15-\frac{8x+9}{4}\)

\(\Leftrightarrow64x^2+72x-35=0\)

\(\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{16}\)

Khi \(x=\frac{-9-\sqrt{221}}{16}\Rightarrow y=\frac{-9+\sqrt{221}}{16}\)

Khi \(x=\frac{-9+\sqrt{221}}{16};y=\frac{-9-\sqrt{221}}{16}\)

Hệ đã cho có 4 nghiệm :

\(\left(\frac{1}{2};\frac{1}{2}\right);\left(-\frac{11}{8};-\frac{11}{8}\right);\left(\frac{-9-\sqrt{221}}{16};\frac{-9+\sqrt{221}}{16}\right);\left(\frac{-9+\sqrt{221}}{16};\frac{-9-\sqrt{221}}{16}\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
DQ
Xem chi tiết
NH
Xem chi tiết
LL
Xem chi tiết
NP
Xem chi tiết
PH
Xem chi tiết
NT
Xem chi tiết
XH
Xem chi tiết
NL
Xem chi tiết