Hệ có chứa một phường trình đẳng cấp (thuần nhất)

NN

giải hệ phương trình :

\(\begin{cases}\frac{x}{y^2+1}=\frac{y^4}{x^2+y^2}\\\sqrt{4x+5}+\sqrt{y^2+8}=6\end{cases}\)

NB
9 tháng 6 2016 lúc 20:24

phương trình đầu tương đương với:

\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)

\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)

\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)

TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm

      \(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

       \(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)

        bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé

TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có 

        \(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)

        Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn

Bình luận (0)
NN
9 tháng 6 2016 lúc 21:07

cam on ban rat nhieu

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
HT
Xem chi tiết
BM
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết
NY
Xem chi tiết
H24
Xem chi tiết
LQ
Xem chi tiết