§3. Phương trình và hệ phương trình bậc nhất nhiều ẩn

PG

Giải hệ phương trình :

         \(\begin{cases}2+9.3^{x^2-2y}=\left(2+9^{x^2-2y}\right).5^{2y-x^2+2}\\4^x+4=4x+4\sqrt{2y-2x+4}\end{cases}\)

NN
14 tháng 4 2016 lúc 22:02

\(\begin{cases}2+9.3^{x^2-2y}=\left(2+9^{x^2-2y}\right).5^{2y-x^2+2}\left(1\right)\\4^x+4=4x+4\sqrt{2y-2x+4}\left(2\right)\end{cases}\)

Điều kiện \(y-x+2\ge0\),đặt \(t=x^2-2y\)

(1) \(\Leftrightarrow2+3^{t+2}=\left(2+9^t\right).5^{2-t}\Leftrightarrow\frac{2+3^{t+2}}{5^{t+2}}=\frac{2+3^{2t}}{5^{2t}}\Leftrightarrow f\left(t+2\right)=f\left(2t\right)\) (3)

Xét\(f\left(x\right)=\frac{2+3^X}{5^x}=2.\left(\frac{1}{5}\right)^x+\left(\frac{3}{5}\right)^x\) là hàm số nghịch biến trên R nên từ (3) suy ra t=2

\(\Leftrightarrow2y=x^2-2\)

Thế vào phương trình (2) : \(4^x+4=4x+4\sqrt{x^2-2x+2}\)

\(\Leftrightarrow4^{x-1}=x-1+\sqrt{\left(x-1\right)^2+1}\Leftrightarrow4^s=s+\sqrt{s^2+1}\left(4\right)\)

Do \(\left(s+\sqrt{s^2+1}\right)\left(\sqrt{s^2+1}-s\right)=1\) nên \(4^{-s}=\sqrt{s^2+1}-s\left(5\right)\)

(4) trừ (5) ta có \(4^s-4^{-s}-2s=0\) (*)

\(f\left(x\right)=4^x-4^{-x}-2x\rightarrow f'\left(x\right)=4\ln\left(4^x+4^{-x}\right)-2\ge2\ln4-2>0\)

s=0 là nghiệm duy nhất của phương trình (*) từ đó hệ có nghiệm \(\left(x;y\right)=\left(1;-\frac{1}{2}\right)\)

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
MD
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
HT
Xem chi tiết
TN
Xem chi tiết
QT
Xem chi tiết
CS
Xem chi tiết
HO
Xem chi tiết