Giải hệ \(\left\{{}\begin{matrix}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{matrix}\right.\)
giải hệ phương trình:\(\hept{\begin{cases}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{cases}}\)
Giải hệ bằng phương pháp phân tích nhân tử
a) \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)
Giải hệ phương trình:
a,\(\left\{{}\begin{matrix}\sqrt{x+y}\left(\sqrt{y}+1\right)=\sqrt{x^2+y^2}+2\\x\sqrt{y-1}+y\sqrt{x-1}=\dfrac{x^2+4y-4}{2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
giải hệ pt
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\left(x-1\right)+\left(y+2\right)=2\\4\left(x-1\right)+3\left(y+2\right)=7\end{matrix}\right.\)
giải hệ:
\(\left\{{}\begin{matrix}x+2y=7\\x^2+y^2-2xy=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=2\\x^2+y^2+164\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y+xy=-13\\x^2+y^2-x-y=32\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=3\\x^3-y^3=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}8\sqrt{xy-2y}-8y+4=\left(x-y\right)^2\\2\sqrt{2y-y^2}\left(\sqrt{8-2x}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{x-2}\end{matrix}\right.\)
Giải hệ pt sau = phương pháp thế:
a, \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)