H24

Giải hệ \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)

NL
2 tháng 12 2021 lúc 21:33

\(x^2+xy\left(2y-1\right)=2y^3-2y^2-x\)

\(\Leftrightarrow x^2+x\left(2y^2-y+1\right)-\left(2y^3-2y^2\right)=0\)

\(\Delta=\left(2y^2-y+1\right)^2+4\left(2y^3-2y^2\right)=\left(2y^2+y-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-\left(2y^2-y+1\right)-\left(2y^2+y-1\right)}{2}=-2y^2\le0\left(loại\right)\\x=\dfrac{-\left(2y^2-y+1\right)+2y^2+y-1}{2}=y-1\end{matrix}\right.\)

Thế xuống dưới:

\(6\sqrt{x-1}+x+8=4x^2\)

\(\Leftrightarrow4x^2-x-14-6\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+7\right)-\dfrac{6\left(x-2\right)}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+7-\dfrac{6}{\sqrt{x-1}+1}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+\dfrac{7\sqrt{x-1}+1}{\sqrt{x-1}+1}\right)=0\)

\(\Leftrightarrow x=2\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết