Ôn tập: Tam giác đồng dạng

HP

Giải giúp mình với các bác

Cho tam giác ABC nhọn có các đường cao AD,BE cắt nhau tại H:

Chứng minh rằng

a) Tam giác ADC đồng dạng với tam giác BEC

b) HE.HB=HA.HD

c)Gọi f là giao điểm CH và AB. Chứng minh AF.AB=AH.AD

d)Chứng minh \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}\)

ND
9 tháng 5 2017 lúc 7:53

Tự vẽ hình nha

a) Xét 2 tam giác vuông ADC và BEC có:

\(\widehat{D}=\widehat{E}=1v\)

\(\widehat{C}\) chung

\(\Rightarrow\Delta ADC\) đồng dạng \(\Delta BEC\)

b) Xét 2 tam giác vuông HEA và HDB có:

\(\widehat{AHE}=\widehat{BHD}\)(đối đỉnh)

\(\widehat{D}=\widehat{E}=1v\)

\(\Rightarrow\Delta HEA\) đồng dạng \(\Delta HDB\)

\(\Rightarrow\)\(\dfrac{HE}{HD}=\dfrac{HA}{HB}\Rightarrow HE.HB=HA.HD\)

c) Vì H là trực tâm nên \(CF\perp AB\)

\(\Rightarrow\widehat{F}=1v\)

Xét 2 tam giác vuông AFH và ADB có:

\(\widehat{F}=\widehat{D}=1v\)

\(\widehat{H}=\widehat{B}\)(cùng phụ với \(\widehat{A}\))

\(\Rightarrow\Delta AFH\:\) đồng dạng \(\Delta ADB\)

\(\Rightarrow\)\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\Rightarrow AF.AB=AH.AD\)

d) Bạn ghi thiếu đề. Chứng minh tổng đó bằng ............

\(\dfrac{S_{HDC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}.HD.DC}{\dfrac{1}{2}.AD.DC}=\dfrac{HD}{AD}\)

\(\dfrac{S_{BDH}}{S_{BDA}}=\dfrac{\dfrac{1}{2}.BD.DH}{\dfrac{1}{2}.BD.AD}=\dfrac{HD}{AD}\)

\(\Rightarrow\)\(\dfrac{S_{HDC}}{S_{ADC}}=\dfrac{S_{BDH}}{S_{BDA}}=\dfrac{S_{HDC}+S_{BDH}}{S_{ADC}+S_{BDA}}=\dfrac{S_{BHC}}{S_{ABC}}=\dfrac{HD}{AD}\)

Tương tự: \(\dfrac{HE}{BE}=\dfrac{S_{AHC}}{S_{ABC}};\dfrac{HF}{CF}=\dfrac{S_{AHB}}{S_{ABC}}\)

\(\Rightarrow\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{BHC}}{S_{ABC}}+\dfrac{S_{AHC}}{S_{ABC}}+\dfrac{S_{AHB}}{S_{ABC}}=\dfrac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
LG
Xem chi tiết
AV
Xem chi tiết
VB
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết