Ẩn danh

giải giúp mình với ạ

NT
23 tháng 8 2024 lúc 20:10

6: \(-3x^2+4x-9\)

\(=-3\left(x^2-\dfrac{4}{3}x+3\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{23}{9}\right)\)

\(=-3\left(x-\dfrac{2}{3}\right)^2-\dfrac{23}{3}< =-\dfrac{23}{3}< 0\forall x\)(ĐPCM)

7: \(x^2-2\sqrt{11}x+11\)

\(=x^2-2\cdot x\cdot\sqrt{11}+\left(\sqrt{11}\right)^2\)

\(=\left(x-\sqrt{11}\right)^2>=0\forall x\)(ĐPCM)

8: \(-5x^2+2x-7\)

\(=-5\left(x^2-\dfrac{2}{5}x+\dfrac{7}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{34}{25}\right)\)

\(=-5\left(x-\dfrac{1}{5}\right)^2-\dfrac{34}{5}< =-\dfrac{34}{5}< 0\forall x\left(ĐPCM\right)\)

9: \(2x^2-4x+9\)

\(=2\left(x^2-2x+\dfrac{9}{2}\right)\)

\(=2\left(x^2-2x+1+\dfrac{7}{2}\right)\)

\(=2\left(x-1\right)^2+7>=7>0\forall x\)

10: \(-3x^2+4x-13\)

\(=-3\left(x^2-\dfrac{4}{3}x+\dfrac{13}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{35}{9}\right)\)

\(=-3\left(x-\dfrac{2}{3}\right)^2-\dfrac{35}{3}< =-\dfrac{35}{3}< 0\forall x\)

11: \(-x^2+2x-3\)

\(=-\left(x^2-2x+3\right)\)

\(=-\left(x^2-2x+1+2\right)\)

\(=-\left(x-1\right)^2-2< =-2< 0\forall x\left(ĐPCM\right)\)

12: \(5x^2-4x+10\)

\(=5\left(x^2-\dfrac{4}{5}x+2\right)\)

\(=5\left(x^2-2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{46}{25}\right)\)

\(=5\left(x-\dfrac{2}{5}\right)^2+\dfrac{46}{5}>=\dfrac{46}{5}>0\forall x\)

13: \(x^2-2x\sqrt{7}+7>=0\)

=>\(\left(x-\sqrt{7}\right)^2>=0\)(luôn đúng)

=>ĐPCM

14: \(3x^2+2x+5\)

\(=3\left(x^2+\dfrac{2}{3}x+\dfrac{5}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{14}{9}\right)\)

\(=3\left(x+\dfrac{1}{3}\right)^2+\dfrac{14}{3}>=\dfrac{14}{3}>0\forall x\left(ĐPCM\right)\)

15: 

\(-3x^2-2x-10\)

\(=-3\left(x^2+\dfrac{2}{3}x+\dfrac{10}{3}\right)\)

\(=-3\left(x^2+2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{29}{9}\right)\)

\(=-3\left(x+\dfrac{1}{3}\right)^2-\dfrac{29}{3}< =-\dfrac{29}{3}< 0\forall x\)(ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết