PP

Giải dùm mình với ạ chi tiết nhớ cảm ơnn

loading...

 

NL
21 tháng 12 2022 lúc 22:22

a.

Khi \(x=4\Rightarrow A=\dfrac{1}{\sqrt{4}}+\dfrac{\sqrt{4}}{\sqrt{4}+1}=\dfrac{1}{2}+\dfrac{2}{3}=\dfrac{7}{6}\)

b.

\(B=\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}}=\dfrac{1}{3}\)

\(\Rightarrow3\sqrt{x}=x+\sqrt{x}\)

\(\Rightarrow x-2\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

c.

\(P=A:B=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(P>3\Rightarrow\dfrac{x+\sqrt{x}+1}{\sqrt{x}}>3\)

\(\Leftrightarrow x+\sqrt{x}+1>3\sqrt{x}\) (do \(\sqrt{x}>0\))

\(\Leftrightarrow x-2\sqrt{x}+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)

\(\Leftrightarrow\sqrt{x}-1\ne0\)

\(\Rightarrow x\ne1\)

Kết hợp ĐKXĐ ta được: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Bình luận (2)

Các câu hỏi tương tự
NP
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
BG
Xem chi tiết
BG
Xem chi tiết
QA
Xem chi tiết
KT
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết