1.
\(-1\le sin2x\le1\Rightarrow-8\le3sin2x-5\le-2\)
\(\Rightarrow y_{min}=-8\) ; \(y_{max}=-2\)
2.
\(-1\le cos\left(x+\dfrac{\pi}{4}\right)\le1\Rightarrow5\le7-2cos\left(x+\dfrac{\pi}{4}\right)\le9\)
\(y_{min}=5\) ; \(y_{max}=9\)
3.
\(-1\le sinx\le1\Rightarrow4\sqrt{2}-1\le4\sqrt{sinx+3}-1\le7\)
\(y_{min}=4\sqrt{2}-1\) ; \(y_{max}=7\)
4.
\(y=sin^2x-4sinx-5=\left(1-sinx\right)\left(3-sinx\right)-8\)
Do \(-1\le sinx\le1\) \(\Rightarrow\left(1-sinx\right)\left(3-sinx\right)\ge0\)
\(\Rightarrow y\ge-8\)
\(\Rightarrow y_{min}=-8\)
5.
\(y=2-\left(cos^2x+2cosx+1\right)=2-\left(cosx+1\right)^2\le2\)
\(\Rightarrow y_{max}=2\)
6.
\(\left(5cos2x-12sin2x\right)^2\le\left(5^2+12^2\right)\left(cos^22x+sin^22x\right)=169\)
\(\Rightarrow-13\le5cos2x-12sin2x\le13\)
\(\Rightarrow-9\le y\le17\)
Đáp án A