II

giải các phương trình sau:

a, \(\sqrt{x^2-1}=x-2\)

b, \(\frac{5}{\sqrt{2x^2+1}}=1\)

c, \(\sqrt{x^2}+\sqrt{x^2-2x+1}=2\)

d, \(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}\left(\frac{x}{3}-\frac{4}{x}\right)\)

NT
3 tháng 2 2022 lúc 0:16

a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+4=x^2-1\\x>=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x=-5\\x>=2\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{4}\left(loại\right)\)

b: \(\Leftrightarrow\sqrt{2x^2+1}=5\)

\(\Leftrightarrow2x^2+1=25\)

\(\Leftrightarrow2x^2=24\)

hay \(x\in\left\{2\sqrt{3};-2\sqrt{3}\right\}\)

c: \(\Leftrightarrow\left|x\right|+\left|x-1\right|=2\)

Trường hợp 1: x<0

Pt trở thành -x-x+1=2

=>-2x=1

hay x=-1/2(nhận)

TRường hợp 2:0<=x<1

Pt trở thành x+1-x=2

=>1=2(loại)

Trường hợp 3: x>=1

Pt trở thành x+x-1=2

=>2x-1=2

hay x=3/2(nhận)

Bình luận (0)