Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

MH

Giải các phương trình sau :

a) \(\sqrt{x-1}+\sqrt{x-4}=\sqrt{x+4}\)

b) \(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=1\)

c) \(5\sqrt{x^2+5x+8}=x^2+5x+4\)

TN
1 tháng 12 2018 lúc 18:15

a) ĐK:\(x\ge4\)

\(\sqrt{x-1}+\sqrt{x-4}=\sqrt{x+4}\Leftrightarrow x-1+x-4+2\sqrt{\left(x-1\right)\left(x-4\right)}=x+4\Leftrightarrow9-x=2\sqrt{x^2-5x+4}\left(ĐK:x\le9\right)\Leftrightarrow\left(9-x\right)^2=4\left(x^2-5x+4\right)\Leftrightarrow81-18x+x^2=4x^2-20x+16\Leftrightarrow3x^2-2x-65=0\Leftrightarrow3x^2-15x+13x-65=0\Leftrightarrow3x\left(x-5\right)+13\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(3x+13\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\3x+13=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\left(tm\right)\\x=-\dfrac{13}{3}\left(ktm\right)\end{matrix}\right.\)

Vậy S={5}

b)\(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=1\Leftrightarrow\sqrt[3]{2x-1}-1+\sqrt[3]{x-1}=0\Leftrightarrow\dfrac{2x-1-1}{\left(\sqrt[3]{2x-1}\right)^2+2.\sqrt[3]{2x-1}+1}+\dfrac{x-1}{\left(\sqrt[3]{x-1}\right)^2}=0\Leftrightarrow\left(x-1\right)\left[\dfrac{2}{\left(\sqrt[3]{2x-1}+2.\sqrt[3]{2x-1}+1\right)}+\dfrac{1}{\left(\sqrt[3]{x-1}\right)^2}\right]=0\)(1)

Dễ thấy \(\dfrac{2}{\left(\sqrt[3]{2x-1}+2.\sqrt[3]{2x-1}+1\right)}+\dfrac{1}{\left(\sqrt[3]{x-1}\right)^2}>0\)

Vậy (1)\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy S={1}

c) ĐK:\(\left[{}\begin{matrix}x\le-4\\x\ge-1\end{matrix}\right.\)

\(5\sqrt{x^2+5x+8}=x^2+5x+4\left(2\right)\)

Đặt a=x2+5x+4(a\(\ge0\))

(2)\(\Leftrightarrow5\sqrt{a+4}=a\Leftrightarrow25\left(a+4\right)=a^2\Leftrightarrow a^2-25a-100=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=\dfrac{25+5\sqrt{41}}{2}\left(tm\right)\\a=\dfrac{25-5\sqrt{41}}{2}\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a=\dfrac{25+5\sqrt{41}}{2}\Leftrightarrow\dfrac{25+5\sqrt{41}}{2}=x^2+5x+4\Leftrightarrow25+5\sqrt{41}=2x^2+10x+8\Leftrightarrow2x^2+10x-17-5\sqrt{41}=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=3,045972466\left(tm\right)\\x=-8,045972466\left(tm\right)\end{matrix}\right.\)

Vậy S={-8,045972466;3,045972466}

Bình luận (0)
TN
1 tháng 12 2018 lúc 19:11

c) ĐK:\(\left[{}\begin{matrix}x\le-4\\x\ge-1\end{matrix}\right.\)

\(5\sqrt{x^2+5x+28}=x^2+5x+4\left(1\right)\)

Đặt a=x2+5x+4(a\(\ge0\))

Vậy \(\left(1\right)\Leftrightarrow5\sqrt{a+24}=a\Leftrightarrow25\left(a+24\right)=a^2\Leftrightarrow a^2-25a-600=0\Leftrightarrow a^2-40a+15a-600=0\Leftrightarrow a\left(a-40\right)+15\left(a-40\right)=0\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a-40=0\\a+15=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=40\left(tm\right)\\a=-15\left(ktm\right)\end{matrix}\right.\)

Vậy ta có a=40\(\Leftrightarrow x^2+5x+4=40\Leftrightarrow x^2+5x-36=0\Leftrightarrow x^2-4x+9x-36=0\Leftrightarrow x\left(x-4\right)+9\left(x-4\right)=0\Leftrightarrow\left(x-4\right)\left(x+9\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-4=0\\x+9=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\left(tm\right)\\x=-9\left(tm\right)\end{matrix}\right.\)

Vậy S={-9;4}

Bình luận (0)
MH
1 tháng 12 2018 lúc 17:50

Phương trình c là \(5\sqrt{x^2+5x+28}=x^2+5x+4\) nha mấy bạn, mình gõ nhầm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
LN
Xem chi tiết
NL
Xem chi tiết
LL
Xem chi tiết
NP
Xem chi tiết
ML
Xem chi tiết
PM
Xem chi tiết
PN
Xem chi tiết