Bài 4: Phương trình tích

VN

Giải các phương trình sau:

a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

b) \(\dfrac{x-5}{2017}+\dfrac{x-2}{2020}=\dfrac{x-6}{2016}+\dfrac{x-68}{1954}\)

TT
26 tháng 1 2018 lúc 20:18

a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Rightarrow\left(x^2+4x+8\right)^2+2.\dfrac{3}{2}x\left(x^2+4x+8\right)+\dfrac{9}{4}x^2-\dfrac{1}{4}x^2=0\)

\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2=0\)

\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x-\dfrac{1}{2}x\right)\left(x^2+4x+8+\dfrac{3}{2}x+\dfrac{1}{2}x\right)=0\)

\(\Rightarrow\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+6x+8\right)=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)=0\)

Vì x2 ≥ 0 với mọi x

⇒ x2 + 5x + 8 ≥ 0 với mọi x

\(\Rightarrow\left(x+2\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

Bình luận (0)
TT
26 tháng 1 2018 lúc 20:26

b) \(\dfrac{x-5}{2017}+\dfrac{x-2}{2020}=\dfrac{x-6}{2016}+\dfrac{x-68}{1954}\)

Trừ 2 vào mỗi vế ta có:

\(\Rightarrow\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)

\(\Rightarrow\dfrac{x-2022}{2017}+\dfrac{x-2022}{2020}-\dfrac{x-2022}{2016}-\dfrac{x-2022}{1954}=0\)

\(\Rightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)

Ta thấy \(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\)

\(\Rightarrow x-2022=0\Rightarrow x=2022\)

Chúc bạn học tốt!

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
T8
Xem chi tiết
T8
Xem chi tiết
NT
Xem chi tiết
BT
Xem chi tiết