§3. Dấu của nhị thức bậc nhất

SK

Giải các bất phương trình sau :

             \(\dfrac{x^2+x-3}{x^2-4}\ge1\)

BV
8 tháng 5 2017 lúc 14:56

Đkxđ: \(x\ne\pm2\)
\(\dfrac{x^2+x-3}{x^2-4}\ge1\)\(\Leftrightarrow\dfrac{x^2+x-3}{x^2-4}-\dfrac{x^2-4}{x^2-4}\ge0\)
\(\Leftrightarrow\dfrac{x^2+x-3-x^2+4}{x^2-4}\ge0\)\(\Leftrightarrow\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}\ge0\)
Đặt \(f\left(x\right)=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}\ge0\).
Ta có:
TenAnh1 TenAnh1 A = (-4.12, -6.26) A = (-4.12, -6.26) A = (-4.12, -6.26) B = (11.24, -6.26) B = (11.24, -6.26) B = (11.24, -6.26)
Vậy tập nghiệm của BPT là: ( -2 ; -1] \(\cup\)\(\left(2;+\infty\right)\).

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
GB
Xem chi tiết
HA
Xem chi tiết
SK
Xem chi tiết
VN
Xem chi tiết
NH
Xem chi tiết