Ta có : \(\dfrac{3}{2-x}< 1\)
\(\Leftrightarrow3< 2-x\)
\(\Leftrightarrow2-x>3\)
\(\Leftrightarrow-x>3-2\)
\(\Leftrightarrow-x>1\\\Leftrightarrow x< -1 \)
\(\dfrac{3}{2-x}< 1\)\(\Leftrightarrow\dfrac{3}{2-x}-1< 0\)\(\Leftrightarrow\dfrac{3-\left(2-x\right)}{2-x}< 0\)\(\Leftrightarrow\dfrac{x+1}{2-x}< 0\).
Th1: \(\left\{{}\begin{matrix}x+1>0\\2-x< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Leftrightarrow-1< x< 2\).
Th2: \(\left\{{}\begin{matrix}x+1< 0\\2-x>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Leftrightarrow x\in\varnothing\).
Vậy tập nghiệm của BPT là: \(-1< x< 2\).