Bài 3: Đạo hàm của hàm số lượng giác

SK

Giải các bất phương trình sau :

a) \(y'< 0\) với \(y=\dfrac{x^2+x+2}{x-1}\)

b) \(y'\ge0\) với \(y=\dfrac{x^2+3}{x+1}\)

c) \(y'>0\) với \(y=\dfrac{2x-1}{x^2+x+4}\)

MH
9 tháng 4 2017 lúc 19:44

a) Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y'<0 <=> dao-ham-cua-ham-so-luong-giac<=> x≠1 và x2 -2x -3 <0

<=> x≠ 1 và -1<x<3 <=> x∈ (-1;1) ∪ (1;3).

b) Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y’≥0 <=> dao-ham-cua-ham-so-luong-giac<=> x≠ -1 và x2 +2x -3 ≥ 0 <=> x≠ -1 và x ≥ 1 hoặc x ≤ -3 <=> x ≥ 1 hoặc x ≤ -3

<=> x∈ (-∞;-3] ∪ [1;+∞).

c).Ta có dao-ham-cua-ham-so-luong-giac

Do đó, y’>0 <=>
dao-ham-cua-ham-so-luong-giac<=> -2x2 +2x +9>0 <=> 2x2 -2x -9 <0 <=> dao-ham-cua-ham-so-luong-giac <=> x∈ dao-ham-cua-ham-so-luong-giac vì x2 +x +4 = (x+1/2)2 + 15/4 >0, với ∀ x ∈ R.

Bình luận (0)
BV
26 tháng 5 2017 lúc 14:47

TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) I = (-1.74, -9.56) I = (-1.74, -9.56) I = (-1.74, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) K = (-7.17, -8.04) K = (-7.17, -8.04) K = (-7.17, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) M = (-7.24, -7.99) M = (-7.24, -7.99) M = (-7.24, -7.99) N = (12.23, -7.99) N = (12.23, -7.99) N = (12.23, -7.99)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
SK
Xem chi tiết
VT
Xem chi tiết