TH1: m=-2
Phương trình sẽ trở thành:
\(\left(-2+2\right)x^2-2\left(-2-1\right)x+3-\left(-2\right)=0\)
=>6x+5=0
=>x=-5/6
TH2: m<>-2
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+2\right)\left(3-m\right)\)
\(=4\left(m^2-2m+1\right)+4\left(m^2-m-6\right)\)
\(=4\left(2m^2-3m-5\right)\)
\(=4\left(2m-5\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>4(2m-5)(m+1)>0
=>(2m-5)(m+1)>0
=>\(\left[{}\begin{matrix}m>\dfrac{5}{2}\\m< -1\end{matrix}\right.\)
Để phương trình có nghiệm kép thì Δ=0
=>4(2m-5)(m+1)=0
=>(2m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-1\end{matrix}\right.\)
Để phương trình vô nghiệm thì Δ<0
=>(2m-5)(m+1)<0
=>\(-1< m< \dfrac{5}{2}\)