(3x-7)(4x-5)>0
TH1: \(\left\{{}\begin{matrix}3x-7>0\\4x-5>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{7}{3}\\x>\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow x>\dfrac{7}{3}\)
TH2: \(\left\{{}\begin{matrix}3x-7< 0\\4x-5< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< \dfrac{7}{3}\\x< \dfrac{5}{4}\end{matrix}\right.\Leftrightarrow x< \dfrac{5}{4}\)
\(\left(3x-7\right)\left(4x-5\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-7>0\\4x-5>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-7< 0\\4x-5< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x>7\\4x>5\end{matrix}\right.\\\left\{{}\begin{matrix}3x< 7\\4x< 5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{7}{3}\\x>\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{7}{3}\\x< \dfrac{5}{4}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{7}{3}\\x< \dfrac{5}{4}\end{matrix}\right.\)
Vậy ..