NT

Giá trị lớn nhất của biểu thức \(A=\frac{x^2-6x+1}{x^2+x+1}\) .

(Hướng dẫn giúp em với em cám ơn nhiều ạ!) 

DT
24 tháng 2 2016 lúc 20:17

khó nghĩ mãi vẫn chưa ra

Bình luận (0)
LM
24 tháng 2 2016 lúc 20:39

A=(x^2-6x+1)/(x^2+x+1)

Ax^2+Ax+A=x^2-6X+1

x^2(A-1)+x(A+6)+A-1=0

delta=b^2-4ac=(A+6)^2-4(A-1)^2>=0

=>A^2+12A+36-4A^2+8A-4>=0

=>-3A^2+20A+32>=0

=>(8-A)(3A+4)>=0

=>-4/3<=A<=8

=> GTLN A=8

Bình luận (0)
LD
24 tháng 2 2016 lúc 21:11

A=(x^2-6x+1)/(x^2+x+1)

Ax^2+Ax+A=x^2-6X+1

x^2(A-1)+x(A+6)+A-1=0

delta=b^2-4ac=(A+6)^2-4(A-1)^2>=0

=>A^2+12A+36-4A^2+8A-4>=0

=>-3A^2+20A+32>=0

=>(8-A)(3A+4)>=0

=>-4/3<=A<=8

=> GTLN A=8

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết