PB

Giả sử hàm  f có đạo hàm cấp n trên R, n ∈ N *  và f ( 1 - x ) + x 2 f ' ' ( x ) = 2 x với mọi x ∈ ℝ . Tính tích phân I = ∫ 0 1 x f ' ( x ) d x   

A. I=1

B. I=-1

C. I= 1 3

D. I= - 1 3

CT
2 tháng 6 2017 lúc 6:35

f ( 1 - x ) + x 2 f ' ' ( x ) = 2 x 1  

Thay x=0 vào (1) ta được f(1)=0 

Đạo hàm hai vế của (1) ta có - f ' ( 1 - x ) + 2 x f ' ' ( x ) + x 2 f ' ' ' ( x ) = 2 2  

Thay x=0 vào (2) ta được f'(1)=2

Mặt khác, lấy tích phân hai vế cận từ 0 đến 1 của (1) ta có:

∫ 0 1 f ( 1 - x ) d x + ∫ 0 1 x 2 f ' ' ( x ) d x = ∫ 0 1 2 x d x

⇔ - ∫ 0 1 f ( 1 - x ) d ( 1 - x ) + f ' ( 1 ) - 2 ∫ 0 1 x f ' ( x ) d x = 1 ⇔ ∫ 0 1 f ( x ) d x - 2 ∫ 0 1 x f ' ( x ) d x = 3

Đặt ∫ 1 f ( x ) d x = I 1 . Vì

∫ 0 1 x f ' ( x ) d x = f ( 1 ) - ∫ 0 1 f ( x ) d x = - ∫ 0 1 f ( x ) d x

nên ta có hệ: I 1 - 2 I = 3 I = - I 1 ⇔ I 1 = 1 I = - 1  

Vậy I=-1

Chọn đáp án B.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết