TP

giả pt: 

2( x^2 +1-1)^2 - 5(x^2+x-1)(x^2-x+1) +2(x^2-x+1)=0

NT
7 tháng 10 2021 lúc 22:26

\(2\left(x^2+x-1\right)^2-5\left(x^2+x-1\right)\left(x^2-x+1\right)+2\left(x^2-x+1\right)^2=0\)

Đặt \(x^2+x-1=a;x^2-x+1=b\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-1=2x^2-2x+2\\x^2-x+1=2x^2+2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+3x-3=0\\-x^2-3x+3=0\end{matrix}\right.\Leftrightarrow x^2-3x-3=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-3\right)=9+4\cdot3=21\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{21}}{2}\\x_2=\dfrac{3+\sqrt{21}}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
TL
Xem chi tiết
MA
Xem chi tiết
DH
Xem chi tiết
DY
Xem chi tiết
WB
Xem chi tiết
DC
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết