a: \(2^{49}< 2^{50}=\left(2^{10}\right)^5=1024^5\)
\(5^{25}=\left(5^5\right)^5=3125^5\)
mà 1024<3125
nên \(2^{50}< 5^{25}\)
=>\(2^{49}< 5^{25}\)
b: \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)
\(73^{75}=\left(73^3\right)^{25}=389017^{25}\)
mà 11449<389017
nên \(107^{50}< 73^{75}\)
c: \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
mà 8192>3125
nên \(2^{91}>5^{35}\)