H24

gấp 2 bài này ạa

NT
12 tháng 1 2024 lúc 22:18

Bài 2:

\(x^2+\left(m+2\right)x+2m=0\)

\(\text{Δ}=\left(m+2\right)^2-4\cdot1\cdot2m\)

\(=m^2+4m+4-8m=m^2-4m+4\)

\(=\left(m-2\right)^2>=0\forall m\)

=>Phương trình luôn có hai nghiệm x1;x2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(m+2\right)}{1}=-m-2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{2m}{1}=2m\end{matrix}\right.\)

\(2\cdot\left(x_1+x_2\right)+x_1x_2\)

\(=2\left(-m-2\right)+2m\)

=-2m-4+2m

=-4

=>Đây là hệ thức cần tìm

Bài 3:

a: Thay x=-2 vào phương trình, ta được:

\(\left(2m-1\right)\cdot\left(-2\right)^2+\left(m-3\right)\cdot\left(-2\right)-6m-2=0\)

=>\(4\left(2m-1\right)-2\left(m-3\right)-6m-2=0\)

=>8m-4-2m+6-6m-2=0

=>0=0

=>Phương trình luôn có nghiệm x=-2

b: TH1: m=1/2

Phương trình lúc này sẽ là:

\(\left(2\cdot\dfrac{1}{2}-1\right)\cdot x^2+\left(\dfrac{1}{2}-3\right)x-6\cdot\dfrac{1}{2}-2=0\)

\(\Leftrightarrow-\dfrac{5}{2}x-5=0\)

=>\(-\dfrac{5}{2}x=5\)

=>\(x=-5:\dfrac{5}{2}=-2\)

TH2: m<>1/2

\(\text{Δ}=\left(m-3\right)^2-4\left(2m-1\right)\left(-6m-2\right)\)

\(=m^2-6m+9+4\left(2m-1\right)\left(6m+2\right)\)

\(=m^2-6m+9+4\left(12m^2+4m-6m-2\right)\)

\(=m^2-6m+9+4\left(12m^2-2m-2\right)\)

\(=m^2-6m+9+48m^2-8m-8\)

\(=49m^2-14m+1=\left(7m-1\right)^2>=0\forall m\)

=>Phương trình luôn có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(m-3\right)-\sqrt{\left(7m-1\right)^2}}{2\cdot\left(2m-1\right)}=\dfrac{-\left(m-3\right)-\left|7m-1\right|}{4m-2}\\x_2=\dfrac{-\left(m-3\right)+\sqrt{\left(7m-1\right)^2}}{2\left(2m-1\right)}=\dfrac{-\left(m-3\right)+\left|7m-1\right|}{4m-2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết