Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính f(x) + g(x) – h(x) biết:
f(x) = x5 – 4x3 + x2 – 2x + 1
g(x) = x5 – 2x4 + x2 – 5x + 3
h(x) = x4 – 3x2 + 2x – 5
Cho f(x)= x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7; g(x) = x4 + 4x3 − 5x8 − x7 + x3 + x2 − 2x7 + x4 – 4x2 − x8. Thu gọn và sắp xếp các đa thức f(x) và g(x) theo luỹ thừa giảm của biến rồi tìm bậc của đa thức đó.
Cho
f ( x ) = x 2 + 2 x 3 - 7 x 5 - 9 - 6 x 7 + x 3 + x 2 + x 5 - 4 x 2 + 3 x 7 g ( x ) = x 5 + 2 x 3 - 5 x 8 - x 7 + x 3 + 4 x 2 - 5 x 7 + x 4 - 4 x 2 - x 6 - 12 h ( x ) = x + 4 x 5 - 5 x 6 - x 7 + 4 x 3 + x 2 - 2 x 7 + x 6 - 4 x 2 - 7 x 7 + x
Tính f(x) + g(x) – h(x)
Tìm hệ số tự do của hiệu f(x) - 2.g(x) với
f ( x ) = 5 x 4 + 4 x 3 - 3 x 2 + 2 x - 1 ; g ( x ) = - x 4 + 2 x 3 - 3 x 2 + 4 x + 5
A. 7
B. 11
C. -11
D. 4
Tìm hệ số tự do của hiệu f(x) - 2.g(x) với
f ( x ) = 5 x 4 + 4 x 3 - 3 x 2 + 2 x - 1 ; g ( x ) = - x 4 + 2 x 3 - 3 x 2 + 4 x + 5
A. 7
B. 11
C. -11
D. 4
(x5 + 4x3 -2x2 + x) : ( x2 - x + 1)
Cho các đa thức:
F(x)=4x4-2+2x3+2x4-5x+4x3-9
G(x)=6x4+6x3-x2-5x-27
a) Thu gọn và sắp xếp các hạng tử F(x) theo lũy thừa giảm của biến
b) Tính K(x)=F(x) + G(x)
c) Gọi H(x)=F(x) - G(x). Chứng minh đa thức H(x) vô nghiệm
Cho hai đa thức
P ( x ) = 2 x 3 - 3 x + x 5 - 4 x 3 + 4 x - x 5 + x 2 - 2 ; Q ( x ) = x 3 - 2 x 2 + 3 x + 1 + 2 x 2
Tính P(x) - Q(x)
A. - 3 x 3 + x 2 - 2 x + 1
B. - 3 x 3 + x 2 - 2 x - 3
C. 3 x 3 + x 2 - 2 x - 3
D. - x 3 + x 2 - 2 x - 3
1. Cho f(x)= x3 - 2x2 + 3x + 1; g(x)+ x3 + x - 1; h(x)= 2x2 -1
a) Tính f(x) - g(x) + h(x)
b) Tìm x sao cho f(x) - g(x) + h(x) = 0
2. Tìm nghiệm của
a) 5x + 3 (3x + 7) - 35
b) x2 + 8x - (x2 + 7x + 8) - 9
3. Tìm f(x) = x3 + 4x2 - 3x + 2; g(x) = x2 (x+4) + x - 5
Tìm x sao cho f(x) = g(x)
4. Tìm m sao cho k(x)= mx2 - 2x + 4 có nghiệm là -2
Cho hai đa thức
P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 ; Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2
Tìm bậc của đa thức M(x) = P(x) + Q(x)
A. 4
B. 2
C. 3
D. 1