1, P=(\(\dfrac{\text{x-1}}{\text{x+3}\sqrt{\text{x-4}}}+\dfrac{\sqrt{\text{x}}+1}{1-\sqrt{\text{x}}}\)) : \(\dfrac{\text{x}+2\sqrt{\text{x}}+1}{x-1}\)+1
a, Rút gọn P
b, Tìm x để P<0
rút gọn rồi tính:
\(\frac{\sqrt{3}(x-3)}{\sqrt{{{x}}^{\text{2}}-3x+9}}\) với \(x=6+3\sqrt{3}\)
Phân tích ra thừa số:
a) x - 9 với x > 0 ; \(\text{ b) x - 5\sqrt{x}+ 4 ;}\)
\(\text{c) 6√xy - 4x\sqrt{x} - 9y√y + 6xy ; }\) \(\text{ d) x - 2\sqrt{x-1} - a^2}\)
?3 rút gọn biểu thức sau :
a) \(\dfrac{\text{x² - 3}}{\text{x}+\sqrt{3}}\)
b) \(\dfrac{\text{1}-a\sqrt{\text{a }}}{1-\sqrt{a}}\)với a ≥ 0 và a ≠ 1
\(1>A=\frac{a\sqrt{a}+1}{a-\sqrt{a}+1}-\frac{2a-2\sqrt{a}}{\sqrt{a}-1}\)
\(2>C=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{2+2}}\right)\cdot\frac{4-x}{2\sqrt{x}}\)
3> \(D=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
4> \(E=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
tìm đk để các bt trên có nghĩa và rút gọn chúng.
mình đg cần trg ngày, thx nhìu
Rút gọn biểu thức
a)\(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
b)\(\sqrt{11-4\sqrt{7}}-\sqrt{2}\cdot\sqrt{8+3\sqrt{7}}\)
c)\(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d)\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}\left(x>0;x\ne1\right)\)
e)\(\frac{4-4\sqrt{x}}{x-2\sqrt{x}-35}+\frac{2}{\sqrt{x}-7}-\frac{3}{\sqrt{x}+5}\left(x\ge0:x\ne49\right)\)
f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
rút gọn rồi tính:
\(\sqrt{5a^\text{2}-4a\sqrt{5}+4}\) với \(a=\sqrt{5}+\frac{1}{\sqrt{5}}\)
rút gọn biểu thức
M=\(\left[\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right]\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
chứng minh rằng
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}=\frac{2}{\sqrt[]{x}}\)