\(\frac{3cot60^o}{2cos^230^o-1}=\frac{3.\frac{\sqrt{3}}{3}}{2.\left(\frac{\sqrt{3}}{2}\right)^2-1}=\frac{\sqrt{3}}{\frac{3}{2}-1}=2\sqrt{3}\)
\(\frac{3cot60^o}{2cos^230^o-1}=\frac{3.\frac{\sqrt{3}}{3}}{2.\left(\frac{\sqrt{3}}{2}\right)^2-1}=\frac{\sqrt{3}}{\frac{3}{2}-1}=2\sqrt{3}\)
Rút gọn b/t
\(\frac{3\cot65}{2\tan25}-\frac{\cos^230+\cos^260}{Sin^267+Sin^223}\)
Tính
A)\(\cos^273^0+\cos^253^0+\cos^217^0\)\(+\cos^2\)372
B)\(\frac{\tan^215^0-1}{\cot75^0-1}-\cos75^0\)
Cho ΔABC có AB=AC=1 , Góc A = 2α (0o< α <45o), đường cao AD và BE
a) Các tỉ số lượng giác: sinα, cosα, sin2α, cos2a được biểu diễn bởi những đường thẳng nào???
b) CM: ΔADC đồng dạng ΔBEC
c) sin2α= 2sinα . cosα
d) cos2α= 1- 2sin2α
= 2cos2α -1
= cos2α - sin2α
e) tan2α= \(\frac{2\tan\alpha}{1-\tan^2\alpha}\)
Tính:
(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)
Rút gọn:
a) \(\left(\frac{1-\tan^2x}{\tan x}\right)^2-\left(1+\tan^2x\right)\left(1+\cot^2x\right)\)
b) \(\left(\sin^4+\cos^4x-1\right)\left(\tan^2x+\cot^2x+2\right)\)
rút gọn:
1, 1-sin2α
2, (1+cos α)(1-cos α)
3, 1+sin2α+cos2α
4,sin α-sin α.cos2α
5, sin4α+cos4α+2.sin2α.cos2α
6,tan2α-sin2α.tan2α
7, cos2α+tan2α.cos2α
8, tan2α.(2.cos2α+sin2α-1)
Chứng minh rằng: \(\frac{\sin\alpha}{1+\cot\alpha}+\frac{\cos\alpha}{1+\tan\alpha}=\frac{1}{\sin\alpha+\cos\alpha}\)
Tính giá trị biểu thức \(M=\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2014^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2013^4+\frac{1}{4}\right)}\) .
cho ba số x, y, z thỏa mãn:
xy + yz + zx +1
Tính:
\(S=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Tính giá trị biểu thức A = \(\sin x.\cos x+\frac{\sin^2x}{1+\cot x}+\frac{\cos^2x}{1+\tan x}\)
với 0 < x < 90 độ