NA

em nhờ mọi người làm giúp với ạundefined

NL
26 tháng 7 2021 lúc 15:13

a.

\(a+2b+3c=14\Rightarrow2a+4b+6c=28\)

\(P-28=a^2+b^2+c^2-2a-4b-6c\)

\(P-28=\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2-14\ge-14\)

\(\Rightarrow P\ge28-14=14\)

\(P_{min}=14\) khi \(\left(a;b;c\right)=\left(1;2;3\right)\)

b.

\(P^2=\left(a+b+c\right)^2=\left(1.a+\dfrac{1}{2}.2b+\dfrac{1}{3}.3c\right)^2\) 

\(P^2\le\left(1+\dfrac{1}{4}+\dfrac{1}{9}\right)\left(a^2+4b^2+9c^2\right)=\dfrac{49}{36}.2015\)

\(\Rightarrow P\le\dfrac{7\sqrt{2015}}{6}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{6\sqrt{2015}}{7};\dfrac{3\sqrt{2015}}{4};\dfrac{2\sqrt{2015}}{21}\right)\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
NA
TM
Xem chi tiết