H24

Em đang cần rất gấp ạ

AT
17 tháng 7 2021 lúc 9:44

\(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\left(x>0,x\ne1\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}:\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=2.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b) \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)

Để \(P\in Z\Rightarrow2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\in\left\{1;2;-1;-2\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{2;3;0\right\}\Rightarrow x\in\left\{4;9;0\right\}\)

 

Bình luận (2)
CP
17 tháng 7 2021 lúc 9:51

a) Với  x>0; x≠1 ta có:

\(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right).\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\left(\dfrac{2\left(\sqrt{x}-1\right)^2}{x-1}\right)\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right).\left(\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{2\sqrt{x}}{\sqrt{x}}\right).\left(\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\right)=\dfrac{4x-4\sqrt{x}}{\sqrt{x}+1}\)

Vậy....

 

Bình luận (0)
NT
17 tháng 7 2021 lúc 13:48

a) Ta có: \(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)

\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}:\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=2\cdot\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Bình luận (0)
NT
17 tháng 7 2021 lúc 13:49

b) Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow2⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;3\right\}\)

hay \(x\in\left\{4;9\right\}\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
HA
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
AN
Xem chi tiết
NL
Xem chi tiết
H24
H24
Xem chi tiết
H24
Xem chi tiết