TH1: m=2
BPT sẽ là 6x+4>0
hay x>-2/3(loại)
TH2: m<>2
\(\text{Δ}=\left(2m+2\right)^2-4\cdot2m\cdot\left(m-2\right)\)
\(=4m^2+8m+4-8m^2+8m=-4m^2+16m+4\)
\(=-4\left(m^2-4m-1\right)\)
\(=-4\left(m^2-4m+4-5\right)\)
\(=-4\left(m-2\right)^2+20\)
Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}-4\left(m-2\right)^2+20< =0\\m-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2>=5\\m< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in(-\infty;-\sqrt{5}+2]\cup[\sqrt{5}+2;+\infty)\\m< 2\end{matrix}\right.\)
\(\Leftrightarrow m\in(-\infty;-\sqrt{5}+2]\)