\(\dfrac{23}{24}=\dfrac{23\times101}{24\times101}=\dfrac{2323}{2424}< \dfrac{2325}{2424}\\ \Rightarrow\dfrac{23}{24}< \dfrac{2325}{2424}\)
$\dfrac{23}{24}$ ... $\dfrac{2325}{2424}$
$\dfrac{23 \times 101}{24 \times 101}$ ... $\dfrac{2325}{2424}$
$\dfrac{2323}{2424}$ ... $\dfrac{2325}{2424}$
$\Rightarrow$ $\dfrac{2323}{2424}$ $<$ $\dfrac{2325}{2424}$$
Vậy$ $\dfrac{23}{24}$ $<$ $\dfrac{2325}{2424}$