§1. Bất đẳng thức

TN

Cho 3 số thực dương a, b, c. Chứng minh bất đẳng thức sau:

\(\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

H24
23 tháng 9 2017 lúc 0:13

Hay 1 cách khác :AM-GM

\(\dfrac{b}{a^2}+\dfrac{c}{a^2}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{1}{a^4}}=\dfrac{4}{a}\)

Tương tự là ta có ngay đpcm

Bình luận (0)
H24
23 tháng 9 2017 lúc 0:08

Một cách đơn giản nhất tương đương ( hay còn gọi là SOS)

\(BĐT\Leftrightarrow\sum\dfrac{b+c-2a}{a^2}\ge0\)

\(\Leftrightarrow\sum\left(\dfrac{b-a}{a^2}+\dfrac{c-a}{a^2}\right)\ge0\)

Nhóm lại: \(\Leftrightarrow\sum\left(\dfrac{a-b}{b^2}+\dfrac{b-a}{a^2}\right)\ge0\)

\(\Leftrightarrow\sum\left(a-b\right)^2.\left(\dfrac{a+b}{a^2b^2}\right)\ge0\)(đúng)

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết