ĐK:`x \ne 2;3`.
`5/(-x^2+5x-6)+(x+3)/(2-x)=0`
`<=> -5(x^2-5x+6)-(x+3)/(x-2)=0`
`<=>-5-(x+3)(x-3)=0`
`<=> -x^2+4=0`
`<=>` \(\left[{}\begin{matrix}x=2\left(L\right)\\x=-2\end{matrix}\right.\)
Vậy `S={-2}`.
\(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\) (1) ( ĐKXĐ: \(x\ne2;x\ne3\) )
pt (1) \(\Leftrightarrow\dfrac{5}{-x^2+2x+3x-6}-\dfrac{x+3}{x-2}\) = 0
\(\Leftrightarrow\dfrac{5}{\left(-x+3\right)\left(x-2\right)}-\dfrac{x+3}{x-2}=0\)
\(\Leftrightarrow\dfrac{5}{\left(-x+3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(-x+3\right)}{\left(x-2\right)\left(-x+3\right)}\) = 0
\(\Rightarrow5+x^2-9\) = 0
\(\Leftrightarrow x^2-4\) = 0
\(\Leftrightarrow x^2\) = 4
\(\Leftrightarrow x^{ }\) = \(\left[{}\begin{matrix}2\left(koTMĐKXĐ\right)\\-2\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{-2\right\}\)